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Abstract. Meta triples provide additional information about individual
triples, such as the source, the occuring time or place, or the certainty.
Integrating such meta triples into semantic knowledge bases would enable
the querying and reasoning mechanisms to be aware of provenance, time,
location, or certainty of triples. However, an efficient RDF representation
for such meta knowledge of triples remains challenging. The existing
reification approach allows such meta knowledge of RDF triples to be
expressed using RDF by two steps. The first step is representing the
triple by a Statement instance which has subject, predicate, and object
indicated separately in three different triples. The second step is creating
assertions about that instance as if it is a statement. While reification is
simple and intuitive, this approach does not have formal semantics and
is not commonly used in practice as described in the RDF Primer.
In this paper, we propose a novel approach called Singleton Property
for representing meta triples and provide a formal semantics for it. We
explain how this singleton property approach fits well with the existing
syntax and formal semantics of RDF, and the syntax of SPARQL query
language. We also demonstrate the use of singleton property in the rep-
resentation and querying of meta knowledge in two examples of Semantic
Web knowledge bases: YAGO2 and BKR. This approach, which is also
simple and intuitive, can be easily adopted for representing and querying
meta triples in other knowledge bases.

1 Introduction

Representing and querying meta knowledge for triples including provenance,
trust, certainty, time, and location have been an emerging demand in creating
and sharing Semantic Web knowledge bases [8, 15–17, 19]. Here we use the ex-
ample from YAGO2[8] for demonstrating the requirements of meta knowledge
for triples and motivating our approach.

1.1 Motivating scenario

Resource Description Framework (RDF) [5, 12] has been well adopted for cre-
ating and sharing various knowledge bases. Knowledge bases that provide a
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comprehensive collection of facts (e.g., YAGO [20]) have been widely used by
various applications. These facts are usually in the form of triples, or subject-
predicate-object such as:

BobDylan isMarriedTo SaraLownds

BarackObama holdsPoliticalPosition PresidentOfTheUnitedStates.
While these facts are useful for finding spouses or political positions of a person,
they do not provide sufficient information for answering many types of challeng-
ing questions involving meta knowledge. Such list of query types and their exam-
ples are listed in Table 1. Additional information about the triples must be pro-

Table 1. Sample queries for different types of meta knowledge, each query example is
assigned an identifier (P, T, S, and C) for reference

Query type Examples

Provenance query P1. Where is this fact from?
P2. When was it created?
P3. Who created this fact?

Temporal query T1. When did this fact occur?
T2. What is the time span of this fact?
T3. Which events happened in the same year?

Spatial query S1. What is the location associated with this fact?
S2. Which events happened at the same place?

Certainty query C1. What is the author confidence of this fact?

vided in order to address those queries. Recent knowledge bases such as YAGO2
[8] provide such temporal and spatial information. For example, the information
about the sources and dates of the fact BobDylan isMarriedTo SaraLownds

would help find the answers for question P1 (where is the fact from?) and P2
(when was it created?) in Table 1.

We assume that this fact could be extracted from the wiki pages of Bob Dylan
on 2009-06-07 and Sara Dylan on 2009-08-08. Using the reification approach, the
whole reified statements and their assertions about sources and extraction dates
are illustrated in Table 2. The fact is represented as an instance of class State-
ment with three different properties for its subject, property and object. Since
we need to represent two occurences of the same statement in two different docu-
ments, we create two resources: stmt#1 and stmt#2 because if we create only one
stmt#1 for both occurrences, the association of each occurrence with its source
and date of extraction together is not distinguishable. The meta information
about the fact is represented by hasSource and extractedOn properties.

The lack of formal semantics connecting a statement and the resource de-
scribing it is one of the main drawbacks of using reification for describing triples.
Since the resource stmt#1 describing a statement is not associated with that
statement, assertions created for this resource are not the same as assertions
created for the original statement as explained in [12, 5]. Moreover, it is obvious
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Table 2. Reified statements and their meta knowledge assertions for the same fact
BobDylan isMarriedTo SaraLownds occuring in two documents

Subject Predicate Object Subject Predicate Object

stmt#1 type Statement stmt#2 type Statement
stmt#1 hasSubject BobDylan stmt#2 hasSubject BobDylan
stmt#1 hasProperty isMarriedTo stmt#2 hasProperty isMarriedTo
stmt#1 hasObject SaraLownds stmt#2 hasObject SaraLownds

stmt#1 hasSource wk:Bob Dylan stmt#2 hasSource wk:Sara Dylan
stmt#1 extractedOn 2009-06-07 stmt#2 extractedOn 2009-08-08

that the reification approach requires four additional triples for representing one
statement per document as a resource. This would increase the size of the data
sets by at least four times, which is not a scalable approach. It would also make
query patterns lengthy for finding when the couple was married or divorced.

1.2 Our approach

In this paper, we address the problem of representing and querying meta knowl-
edge of triples by looking at it from a different perspective. Our motivation rises
from the question as to whether or not a more efficient mechanism for describing
a statement using RDF exists. A good design should provide a formal semantics,
use existing syntax and be compatible with existing Semantic Web languages,
tools, and methods. Firstly, the proposed formal semantics should be compatible
with the existing model-theoretic semantics to avoid conflicts in the RDF/RDFS
interpretation. Secondly, using existing syntax would ensure the compatibility of
meta triples and existing triple datasets. Finally, it would overcome the need to
develop new or revise available tools and methods for making them work with
new meta triples.

This paper proposes a novel approach called Singleton Property for represent-
ing meta statements using RDF with regard to the three requirements above.
The intuition of our approach is based on the assumption that the nature of ev-
ery relationship is universally unique. The uniqueness of the relationship can be
a key for any statement using the new type of property called singleton property.
A singleton property is a property instance representing one specific relationship
between two particular entities under one specific context. Singleton properties
can be viewed as instances of generic properties whose extensions contain a set
of entity pairs. Similar to the way we assign label for generic property, we assign
a unique label for each singleton property.

For example, for the same statement BobDylan isMarriedTo SaraLownds,
we can create two singleton property instances describing the occurrences of this
statement in two documents as illustrated in Table 3. For each document (or con-
text of the fact), we create one separate singleton property instance representing
that fact (in T1, T5). Particularly we create isMarriedTo#1 and isMarriedTo#2

for the relationships extracted from Wiki pages of Bob Dylan (wk:Bob_Dylan)
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Table 3. Singleton properties and their meta knowledge assertions for the same fact
BobDylan isMarriedTo SaraLownds occuring in two documents

Triple No Subject Predicate Object

T1 BobDylan isMarriedTo#1 SaraLownds
T2 isMarriedTo#1 rdfs:subPropertyOf isMarriedTo
T3 isMarriedTo#1 hasSource wk:Bob Dylan
T4 isMarriedTo#1 extractedOn 2009-06-07

T5 BobDylan isMarriedTo#2 SaraLownds
T6 isMarriedTo#2 rdfs:subPropertyOf isMarriedTo
T7 isMarriedTo#2 hasSource wk:Sara Dylan
T8 isMarriedTo#2 extractedOn 2009-08-08

and Sara Dylan (wk:Sara_Dylan), respectively. Meta knowledge about the fact
from one document can be added as assertions for the singleton property from
that document respectively (in T3, T4, T7, and T8). These two singleton prop-
erties as sub properties of the same generic property isMarriedTo (in T2, T6)
allows us to infer the original statement. Particularly, one can easily infer the
original statement BobDylan isMarriedTo SaraLownds from statements T1 and
T2, or T5 and T6, using RDFS entailment rule of subPropertyOf [5]. One draw-
back of instantiating singleton property via rdfs:subPropertyOf is that it adds
too many leaf nodes into the property hierarchy. This can be avoided by instan-
tiating the singleton property via rdf:type (in T2 and T6). Using this rdf:type
instantiation method, generic properties become binary classes and singleton
properties become instances of these binary classes. We will provide a more de-
tailed explanation on how we come up with the set of triples listed in Table 3 in
the next section.

The remaining sections are organized as follows. Section 2 explains the ap-
proach in details and justifies our design choices for the singleton property. Sec-
tion 3 provides a formal semantics for the singleton property. The querying
mechanism is described in Section 4. We also discuss issues related to how this
singleton property could be adopted by existing Semantic Web technologies and
standards by providing two use cases in the BKR[15] and YAGO2.

2 Singleton Property

In this section, we will explain our intuition for the proposed approach and
justify our design choices for the singleton property.

Back to the motivating example we used, the reification process represents a
triple as a resource, which is an instance of the Statement class [5]. Reifying a
statement requires two steps. The first step is to find a resource that uniquely
identifies a statement. The second is to create assertions for that statement via
that resource. Here we explain our rationale accounting for the novel perspective
that leads to our approach.
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2.1 Singleton property as unique key for statement within a context

The first step involves finding which resource among the three elements of a
triple could fundamentally distinguish statements.

In the Semantic Web, everyone can create any statement. It is possible that
the same statements may be created in different datasets by different organi-
zations. Therefore, we need to find a resource that can distinguish any two
statements. Given that the statements may be same, they may be associated
with different contextual information when they are created. The information
capturing the context when a statement is created could be helpful for identify-
ing statements. Such contextual information of a statement could be described
by various dimensions of meta knowledge, including the source recording that
statement, the time or place that statement occurs, the certainty of the author
about that statement, and etc. We can conclude that a statement within a con-
text is unique. Now the next question is, what can represent that uniqueness of
a statement within a context? If the same statements are associated with differ-
ent contexts, are they the same in nature? What remains same? What becomes
different?

From a philosophical point of view, we believe that the existence of two enti-
ties in the subject and the object of one statement is independent from the con-
texts creating that statement. Particularly, they already exist before the state-
ment is created. For example, the existence of Bob Dylan and Sara Lownds does
not depend on their marriage, and obviously they also exist before they marry
each other. While creating a new statement, what we actually do is connect two
existing entities and establish a new relationship between them. Therefore, the
contextual information while establishing a new relationship can play the role of
a key for any statement. We can manifest that key by creating a new property
instance representing the newly established relationship associated with a con-
text and enforcing it to be unique. We call it singleton property. The singleton
concept is taken from set theory. A singleton set has only one element.

Definition 1. A singleton property is a unique property instance representing
a newly established relationship between two existing entities in one particular
context.

For example, a new relationship is established for Bob Dylan and Sara
Lownds according to two Wiki pages. We can consider each Wiki page as a con-
text associated with the new relationship. We note that here we give examples of
context and leave the questions of what exactly context is described and how to
identify it for data publishers because those are subjective to them. As a result,
we can create two singleton properties isMarriedTo#1 and isMarriedTo#2 to
represent the new relationships associated with these two contexts. The state-
ments asserting the new relationships become:

T1: BobDylan isMarriedTo#1 SaraLownds, and
T5: BobDylan isMarriedTo#2 SaraLownds.
Obviously, the number of such singleton properties would be as enormous as

the number of facts and contexts in any real RDF datasets. We need to provide a
mechanism to cluster them into groups for higher level abstraction. Such mecha-
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nism allows us to group similar singleton properties into a more general one.We
observe that, although statements are fundamentally distinguishable based on
their context, they do share common characteristics in their nature which are
captured by generic properties. The relationship between singleton and generic
properties can be considered from two different perspectives: the singleton prop-
erty is either a sub property, or an instance of generic property.

Property instance. In this view, while generic properties are property
whose extension contains a set of entity pairs, singleton properties are unique to
one particular entity pair. Intuitively we can consider singleton properties as in-
stances of generic properties. In that sense, a singleton property is interconnected
to its generic property via rdf:type.

Sub property. Singleton property can be considered as a specialization,
or sub property of a generic property in one particular context. In this case,
if we create one singleton property for each fact via rdfs:subPropertyOf, the
number of singleton property nodes below the generic property in the property
hierarchy would become enormous. For example, YAGO has 23,770 facts 3 using
the property isMarriedTo. A schema with such a large amount of child nodes
in the property hierarchy is not desirable. This drawback does not happen with
the property instance approach.

Therfore, we decide to stick with the property instance approach, where a
singleton property and its generic property are interconnected via rdf:type. A
generic property can be considered as a property class. The extension of generic
property class is a set of singleton property instances created in all contexts. In
the example described in Table 3, we use rdf:type in T2 and T6 of instead of
rdfs:subPropertyOf.

T2: isMarriedTo#1 rdf:type isMarriedTo, and
T6: isMarriedTo#2 rdf:type isMarriedTo.

2.2 Asserting meta knowledge for triples

Here we consider various contextual dimensions for a statement, such as prove-
nance, time, location, and certainty.

Provenance of a statement explains the origin of that statement [13, 18]. It
includes many kinds of metadata for answering questions such as the ones listed
in Table 1. For example, the triple T1 and T2 are extracted from the Wiki page
of Bob Dylan and Sara Lownds. We can assert the provenance of two triples
using property hasSource and extractedOn as follows.

T3: isMarriedTo#1 hasSource wk:Bob Dylan
T4: isMarriedTo#1 extractedOn 2009-06-07

T7: isMarriedTo#2 hasSource wk:Sara Dylan
T8: isMarriedTo#2 extractedOn 2009-08-08

Time. The validity of a statement may be associated with a specific time, or
a time span. For example, a person is born at one specific time, and a marriage

3 http://www.mpi-inf.mpg.de/yago-naga/yago/statistics.html
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between two persons may last for one period of time. Here we represent the time
span of the marriage between Bob Dylan and Sara Lownds using hasStart and
hasEnd:

isMarriedTo#1 hasStart 1965-11-22 .
isMarriedTo#1 hasEnd 1977-06-29 .

Location. A statement may be associated with a spatial dimension. For ex-
ample, the Wiki page of Sara Lownds stated that the marriage of Bob Dylan and
Sara Lownds took place at Mineola, Long Island. We assert this meta knowledge
for the singleton property isMarriedTo#2 as follows.

isMarriedTo#2 tookPlaceAt Mineola .

Certainty. The certainty of a statement reflects the confidence of the authors
while creating that statement. For example, if the confidence score of the tool
extracting the statement T2 is 0.7, we can represent it as follows.

isMarriedTo#2 hasScore 0.7 .

From the assertions created for provenance, time, location and certainty
above, we observe that they share the same triple pattern, which is singleton-
property meta-property meta-value. In our example, meta properties are hasStart,
hasEnd, hasSource, hasScore, tookPlaceAt. We can generalize this pattern for
representing all dimensions of meta knowledge as follows. Singleton Graph
Structure. In general, given a fact (s, p, o), let p#i be the singleton property
representing this fact in one particular context, mp#j be the meta property, mv#j
be the value of meta property, the set of triples forming singleton graph struc-
ture asserting meta knowledge for this fact is provided in Table 4. We will use
this singleton graph structure for querying meta knowledge in Section 4.

Table 4. Singleton graph structure asserting meta knowledge for data triple (s,p,o)

Triple type Subject Predicate Object

Instantiating triple p#i rdf:type p
Singleton triple s p#i o
Meta triple p#i mp#j mv#j

2.3 Enforcing the singleton-ness of property instances

If the singleton property isMarriedTo#1 is asserted in another triple such as
BarackObama isMarriedTo#1 MichelleObama, this together with the existing
assertion isMarriedTo#1 hasStart 1965-11-22 would imply the marriage date
of the Obamas is 1965-11-22, which is not true. In order to avoid this, we need
to ensure the singleton property isMarriedTo#1 occurs in only one triple.

This constraint has to be enforced for all URIs of singleton property instances.
Data publishers may combine their URI prefix, the generic property name and
the timestamp when the instance is created into the URI of a singleton property
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to make it unique. However, there are still cases that two instances may share
the same URIs. Therefore, data publishers may employ the Universally Unique
Identifier (UUIDs) [9] to ensure the singleton-ness of their property instances.
The validation of this uniqueness constraint is straightforward, by counting the
number of triple occurrences per singleton property. As the current RDF syntax
does not allow blank nodes as properties, we do not represent singleton properties
as blank nodes, although one advantage of using blank nodes in the property is
decidability for reasoning [11].

3 Model-Theoretic Semantics

This section explains how the singleton property can fit to the existing formal
semantics. We reuse the model-theoretic semantics described in [6] with three
levels of interpretation: simple, RDF and RDFS. For each interpretation we add
additional criteria for supporting singleton property. While we explain the new
elements in detail, elements without further explanation remain as they are in
the original model-theoretic semantics described in [6].

Given a vocabulary V, the original simple interpretation I consists of

– IR, a non-empty set of resources, alternatively called domain or universe of
discourse of I,

– IP, the set of generic properties of I,
– IEXT , a function assigning to each property a set of pairs from IR
IEXT : IP → 2IR×IR where IEXT (p) is called the extension of property p,

– IS , a function, mapping URIs from V into the union set of IR and IP,
– IL, a function from the typed literals from V into the set of resources IR,
– LV , a subset of IR, called the set of literal values.

We define IPs as a set of singleton properties and IS EXT (ps) as the function
mapping a singleton property into a pair of resources.

Simple interpretation of vocabulary V is an original simple interpretation
of the vocabulary V ∪ VSIM that satisfies the additional criteria:

– IPs, a subset of IR, called the set of singleton properties of I,
– IS EXT (ps), the extension of singleton property ps, which is a singleton set,
IS EXT : IPs → IR × IR and |IS EXT (ps)| = 1.

Note that the mapping function IS EXT is not a one-to-one mapping; multiple
singleton properties may be mapped to the same pair of entities.

RDF interpretation of a vocabulary V is a simple interpretation of the
vocabulary V ∪ VRDF that satisfies the criteria from the original RDF interpre-
tation and the following criteria:

– xs ∈ IPs if 〈xs, rdf :PropertyI〉 ∈ IEXT (rdf : typeI), and |IS EXT (xs)| = 1,
this causes IPs ⊂ IR because instances of class Property are resources.

– xs ∈ IPs if 〈xs, xI〉 ∈ IEXT (rdf : typeI), x ∈ IP, and |IS EXT (xs)| = 1,
a singleton property xs is an instance of a property x if they are intercon-
nected by the property rdf:type, x is called a generic property.
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A generic property may be singleton if it is connected to rdf:Property via
rdf:type and it occurs in only one triple. However, a singleton property in gen-
eral cannot be a generic property because a generic property is usually mapped
to a non-singleton set of pairs, while the singleton property is mapped to one
particular pair of entities, which is not equivalent to a pair (i.e., one element is
not equivalent to a set of elements). Therefore, the set of singleton properties
may contain some generic properties, but not vice versa.

Given the set of triples with singleton properties and their temporal assertions
in Table 5, let VEX be the vocabulary consisting of all the names of subjects,
predicates and objects in those triples, the RDF interpretation of the vocabulary
VEX is provided in Table 6.

Table 5. Singleton property approach representing facts and their temporal assertions

Triple No Subject Predicate Object

T0 BobDylan isMarriedTo SaraLownds
T1 BobDylan isMarriedTo#1 SaraLownds
T2 isMarriedTo#1 rdf:type isMarriedTo
T3 isMarriedTo#1 hasStart 1965-11-22
T4 isMarriedTo#1 hasEnd 1977-06-29

T5 BobDylan isMarriedTo CarolynDennis
T6 BobDylan isMarriedTo#2 CarolynDennis
T7 isMarriedTo#2 rdf:type isMarriedTo
T8 isMarriedTo#2 hasStart 1986-06-##
T9 isMarriedTo#2 hasEnd 1992-10-##

Table 6. RDF interpretation for the vocabulary VEX from Table 5

IR = {α, β, γ, δ, θ, λ} IS = BobDylan 7→ α

IP = {δ, θ, λ, σ, φ} SaraLownds 7→ β

LV = {1965-11-22, 1977-06-29, CarolynDennis 7→ γ

1986-06-##, 1992-10-##} isMarriedTo 7→ δ

IEXT = θ 7→ {〈α, β〉} isMarriedTo#1 7→ θ

λ 7→ {〈α, γ〉} isMarriedTo#2 7→ λ

σ 7→ {〈θ, 1965-11-22 〉, hasStart 7→ σ

〈λ, 1986-06-## 〉} hasEnd 7→ φ

φ 7→ {〈θ, 1977-06-29〉,
〈λ, 1992-10-## 〉}
rdf:type 7→ {〈θ, δ〉,〈λ, δ〉}
δ 7→ {〈α, β〉,〈α, γ〉}

IPs = {θ, λ}
IS EXT = θ 7→ 〈α, β〉

λ 7→ 〈α, γ〉
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RDFS interpretation of a vocabulary V is an RDF interpretation of the

vocabulary V ∪ VRDFS that satisfies criteria from the original RDFS interpre-
tation and the following criteria:

– If xs ∈ IPs, x ∈ IP , and 〈xs, x〉 ∈ IEXT (rdf : typeI) then IS EXT (xs) ∈
IEXT (x). IEXT (x) is also called class extension of the generic property x.
Class extension of a property is a set of singleton properties connected to
that property via rdf:type.

– If 〈x, y〉 ∈ IEXT (rdfs: domainI), 〈u, v〉 ∈ IS EXT (xs),
and 〈xs, x〉 ∈ IEXT (rdf : typeI), then u ∈ ICEXT (y) with ICEXT (y) is class
extension of y.
If u and v are interconnected by a singleton property xs of generic property
x, then u has the type of y, which is the domain of x.

– If 〈x, y〉 ∈ IEXT (rdfs: rangeI), 〈u, v〉 ∈ IS EXT (xs),
and 〈xs, x〉 ∈ IEXT (rdf : typeI), then v ∈ ICEXT (y).
If u and v are interconnected by a singleton property xs of generic property
x, then v has the type of y, which is the range of x.

– IS EXT (rdfs: subPropertyOfI) is reflexive and transitive in IPs.
– If 〈x, y〉 ∈ IS EXT (rdfs: subPropertyOfI) then x ∈ IPs, y ∈ IPs,

and IS EXT (x) = IS EXT (y).
If two singleton properties are interconnected by rdfs:subPropertyOf, then
they must be mapped to the same pair of entities.

Classes such as Resource, Literal, and properties such as subClassOf are
not discussed here because they are irrelevant to singleton properties.

Deduction rule. In the previous section, we instantiated singleton proper-
ties from its generic property via rdf:type and created meta triples for those
singleton properties.

BobDylan isMarriedTo#1 SaraLownds (singleton triple)
isMarriedTo#1 rdf:type isMarriedTo (singleton instantiation)
BobDylan isMarriedTo SaraLownds (original triple)

Here we show that the first two triples can also yield the original triple.
Formally, if 〈x, y〉 ∈ IEXT (rdf : typeI) and 〈u, v〉 = IS EXT (x) then 〈u, v〉 ∈
IEXT (y). From the RDF interpretation provided in Table 6, we have:

IS EXT (isMarriedTo#1) ∈ IEXT (isMarriedTo) because
IS EXT (isMarriedTo#1) = 〈α, β〉 and IEXT (isMarriedTo) = {〈α, β〉,〈α, γ〉}

and 〈α, β〉 ∈ {〈α, β〉,〈α, γ〉}.

4 Querying

In Section 2, we described the singleton graph structure for representing meta
knowledge. This section explains the principle for querying such meta knowledge
based on that singleton graph structure. We will use the example from Table 5
for demonstrating how we query meta knowledge.

Since all these triples in singleton graph structure are represented in RDF,
they can be queried using any RDF query language. Here we consider SPARQL
as it is recommended for querying RDF by W3C [4].
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In principle we can distinguish two basic types of query patterns: data vs.

metadata. Both query patterns can be constructed as graph pattern in the
SPARQL queries.

Data query contains graph patterns created from a set of factual data triples
in the form of (s, p, o) by replacing any of subject s, property p or object o with
variables. For example, given the set of data triples T0 and T5 of Table 5,

T0: BobDylan isMarriedTo SaraLownds
T5: BobDylan isMarriedTo CarolynDennis

we can construct a data query asking for spouses of BobDylan as follows.
SELECT ?obj

WHERE { BobDylan isMarriedTo ?obj}

This query type is commonly used in Semantic Web applications. Using the
singleton property approach for representing meta knowledge of data triple, we
can also easily query such meta knowledge.

Metadata query contains graph patterns created from a set of triples in
the singleton graph structure by replacing any subject, property and object of
any triple with variables. One sample of meta query pattern asking for the meta
values of any meta property mp could be:

SELECT ?mp ?mv

WHERE {?pi rdf:type p . s ?pi o . ?pi ?mp ?mv . }

The query instance asking for the dates of BobDylan’s marriages is as follows.
SELECT ?startOrEnd ?dates

WHERE {?pi rdf:type isMarriedTo .

BobDylan ?pi ?o . ?pi ?startOrEnd ?dates . }

In practice, one may mix data patterns and metadata patterns into one query
pattern for more complicated queries. Next section will provide more queries of
different kinds of metadata in detail.

5 Using Singleton Property in Existing Knowlege Bases

5.1 BKR and Provenance

The Biomedical Knowledge Repository (BKR) is an extensive knowledge base
that integrates biomedical knowledge from multiple sources while tracking their
provenance using a unified provenance framework [15, 16]. A triple in the BKR
may be extracted from PubMed articles and is associated with a confidence
score from its extraction tool. Given a triple (s, p, o) extracted from PMID#1
with confidence score 0.3, from PMID#2 with confidence score 0.8, the current
representation of provenance of a triple with PaCE [16] is provided in Table 7,
note that the confidence score cannot be represented by this approach.

The basic idea of PaCE is to create one instance of subject and object per
context, and asserting the source of those instances. The source of the triple
is inferred from the source of instances. This was proved to be better than
the reification approach in terms of number of triples and query performance.
However, this approach is limited in supporting different dimensions of meta
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Table 7. PaCE approach for (s, p, o) with meta knowledge (PMID#1, 0.3) and
(PMID#2, 0.8)

Subject Property Object Subject Property Object

s PMID#1 rdf:type s s PMID#2 rdf:type s
o PMID#1 rdf:type o o PMID#2 rdf:type o
s PMID#1 p o PMID#1 s PMID#2 p o PMID#2
s PMID#1 derivedFrom PMID#1 s PMID#2 derivedFrom PMID#2
o PMID#1 derivedFrom PMID#1 o PMID#2 derivedFrom PMID#2

Table 8. Singleton Property approach for (s, p, o) with meta knowledge (PMID#1,
0.3) and (PMID#2, 0.8)

Subject Property Object Subject Property Object

p#1 rdf:type p p#2 rdf:type p
s p#1 o s p#2 o
p#1 derivedFrom PMID#1 p#2 derivedFrom PMID#2
p#1 hasScore 0.3 p#2 hasScore 0.8

knowledge because it can only represent the source of a triple. Here we have at
least two metadata associated with a triple, but it can only represent the source.

Using the Singleton Property approach, we can represent the complete meta-
data information as illustrated in Table 8. Moreover, if we need to represent more
meta knowledge dimensions for the triple (s, p, o), we can simply add assertions
into the singleton properties p#1 and p#2.

Provenance query. Since the BKR integrates data from multiple sources,
it is common to ask about the provenance of a triple, such as the sources, the
publication date, the confidence score, and etc. For example, one may query
the sources of a triple that has high confidence score (above 0.7). This query
cannot be supported by PaCE approach because the confidence score is not
present. Using the Singleton Property approach, and adopting the metadata
query discussed in Section 4, we can create a query like this:

SELECT ?source ?score

WHERE {s p o . ?pi rdf:type p . ?pi derivedFrom ?source .

?pi hasScore ?score . FILTER (?score > 0.7) }

5.2 YAGO2 and Temporal-Spatial Enhancement

While YAGO [20] provides an extensive collection of factual triples extracted
from Wiki and other sources, YAGO2 [8] enhances this knowledge base with
temporal and spatial information for those factual triples. This knowledge base
becomes aware of time and places and hence, is capable of answering more com-
plex queries involving such meta knowledge.

Here we reuse the example from [8] to demonstrate the requirements of rep-
resenting meta knowledge in YAGO2. We put the set of facts from the example
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into Table 9. YAGO2 uses fact identifiers to represent the facts, and asserts the
occuring time and place of a fact by using its fact identifier as subjects of the
meta assertions. It also provides a SPARQL-like query language which allows it
to incorporate fact identifier in the query pattern. Here we propose to replace
fact identifier by the singleton property in representing a statement and assert-
ing its temporal and spatial information. This would enable the interoperability
between this dataset with other RDF datasets and allow them to be queried
using standard query language.

Table 9. YAGO2 uses fact id for representing fact and asserting meta knowledge

Fact Id Subject Predicate Object

#1 GratefulDead performed TheClosingOfWinterland
#2 #1 occursIn SanFrancisco
#3 #1 occursOnDate 1978-12-31

Table 10. Singleton property replaces fact id in asserting meta knowledge

Subject Predicate Object

performed#1 rdf:type performed
GratefulDead performed#1 TheClosingOfWinterland
performed#1 occursIn SanFrancisco
performed#1 occursOnDate 1978-12-31

Temporal-spatial query in the YAGO can be specified in its query lan-
guage SPARQL-like. For example, for finding the concerts that took place near
San Francisco, one may create a SPARQL-like query as displayed on the left.
We may also create an equivalent SPARQL query as displayed on the right for
the triples using singleton property approach.

SPARQL-like pattern SPARQL pattern

?id: ?s performed ?o . ?performed#1 rdf:type performed .
?id occursIn ?l . ?s ?performed#1 ?o .
?l hasGeoCoordinates ?g . ?performed#1 occursIn ?l .
SanFrancisco hasGeoCoordinates ?sf . ?l hasGeoCoordinates ?g .

?l near ?sf . SanFrancisco hasGeoCoordinates ?sf .
?l near ?sf .

Given that near is a proximate predicate, it may need to be elaborated in
the graph pattern of SPARQL query on the right.

Here our purpose is to provide an RDF representation for meta triples in
YAGO2 to make it compatible with existing RDF datasets and interoperable to
other Semantic Web applications that use existing standards such as SPARQL.
We do not attempt to compare the query performance or expressiveness between
SPARQL and SPARQL-like language used in YAGO2.
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6 Related Work

Many approaches have been proposed to address the problem of representing
and querying meta knowledge of triples. We can divide these approaches into
three main categories: triples [15, 16], quadruples [1, 3, 19] and quintuples [17]
based on the number of elements in the structure each approach employs. Each
approach reflects one perspective on how meta knowledge for triples could add
elements into tuples. We will discuss about the contribution of each approach,
and how our approach fits into the scheme.

Triples. Representing different dimensions of meta knowledge for triples us-
ing RDF triples in order to retain the compatibility and interoperability with
existing Semantic Web knowledge bases, tools, languages and methods is the
main goal of this kind of approach. The reification approach [12, 5] allows meta
knowledge to be asserted from reified statements. The singleton property ap-
proach differs from the reification in that it provides a formal semantics. More-
over, it requires two triples for creating a singleton property and asserting the
singleton tripe while a reified statement requires four triples. That would make
it more efficient in terms of less number of triples, shorter query patterns, and
hence, less number of joins in query processing.

Sahoo [16] proposes the PaCE approach for representing the provenance of
a triple by creating different instances for its subject and object for different
contexts and asserting provenance for those instances. The source of the triple
is derived from the source of its individual components. The singleton property
approach is similar to PaCE in that it creates different instances for capturing
different contexts. However, the main difference between the two approaches has
to do with which instances to create for each context. We ground our approach
on shifting the focus from entities to properties. That is, within a new context,
a new relationship is established between two already existing entities.

Quadruples. In the reification approach, we need to create statement in-
stances and indicate subject, property, and object for those instances. Intuitively
this verbosity can be avoided by adding one more element into a triple to make
it quadruple. Named graph [1] and other work on top of named graph such as [3,
14] follow the approach, using the forth component to represent the provenance
of a set of triples. Although technically we can restrict a named graph to a single
triple and use it to assert meta knowledge to that triple, it does not naturally
serve this purpose because originally the named graph is designed for represent-
ing provenance and trust of a set of triples. The number of named graphs would
increase significantly (up to the number of triples in the dataset) and become
dispropotionate with respect to its main purposes, managing provenance and
signing trust certificates. On the other hand, the singleton property approach is
complementary to named graph approach in representing provenance for differ-
ent granularity levels of triples, one is for individual triple, the other one is for
a set of triples. Data publishers may choose the approach that fulfills specific
requirements of their applications.

Straccia [19] also annotates the meta knowledge such as temporal and cer-
tainty for RDF triples. We classify this approach into quadruples because it
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annotates every RDF triple with an annotation term. It proposes a new alge-
braic structures with well-defined operators for manipulating meta information.
This approach is followed up with the RDFS reasoning supported by [2]. Our
approach differs from this approach in that we leverage RDF triple for the repre-
sentation of meta knowledge assertion, allowing them to be queried and entailed
using existing languages and tools while this approach does not.

Quintuples. The RDF+ approach [17] defines the abstract syntax of RDF+

statement as a quintuple by extending the named graph quad with a statement
identifier. The statement identifier is used as subject of the meta knowledge as-
sertion, which is an RDF triple. Since the formal semantics is defined in RDF+,
mappings from RDF to RDF+ and vice versa have to be made. Additionally,
the SPARQL syntax and semantics have to be extended to support querying
RDF+. The singleton property approach differs from the RDF+ approach in
two main design points. Firstly, while a statement identifer is defined in the
RDF+ statement which is a quintuple, our approach represents singleton prop-
erty instances in RDF triples. Because of that, our approach does not need any
mapping as the RDF+ does. Secondly, our approach does not require any exten-
sion to the syntax or semantics of SPARQL because it is completely compatible
with SPARQL.

7 Conclusion

We have presented our approach for representing and querying meta knowledge
using the singleton property. Regular RDF properties are viewed as generic prop-
erties in our approach, and the set of singleton properties are viewed as instances
of those generic properties. Both singleton properties and meta knowledge asser-
tions are represented using RDF syntax, allowing them to be compatible with
existing RDF knowledge bases. The meaning of such a singleton property is de-
fined in the formal semantics that is extended from the current model-theoretic
semantics in all three steps of interpretation: simple, RDF, and RDFS. This sin-
gleton property approach also fits nicely the syntax of SPARQL query language.
Because of those, we are able to demonstrate how this approach can be easily
used for representing and query meta triples in two existing knowledge bases.

Therefore, adopting this approach in representing, querying, and sharing
knowledge bases that are aware of meta knowledge would allow those knowl-
edge bases to be compatible with a wide range of Semantic Web languages,
tools, and methods. Please note that meta knowledge properties used in the pa-
per are only for demonstration. When adopting this approach, one may want to
use vocabularies of meta knowledge recommended by W3C such as PROV [10]
or OWLTime [7] for enhancing the interoperability with other knowledge bases
and applications.
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